Tuesday, 13 August 2013

uniform ultrafilter

uniform ultrafilter

‎‎Lemma:‎Let ‎‎$‎(X,
‎\tau‎) ‎‎$‎ be a
‎‎$‎KC‎$‎-space which is not countably
compact, ‎‎$ ‎\{ x_n :n ‎\in ‎‎\omega
‎\}‎$‎ a set without accumulation points, ‎$
‎‎\mathcal{F} ‎$‎ a uniform ultrafilter defined
&#8206;over&#8206; &#8206;&#8206;$&#8206; \{ &#8206;x_{n}: 0 < n
<&#8206;\omega \}&#8206;$ &#8206;and a&#8206;&#8206; &#8206;new
&#8206;topology&#8206; $ \tau&#8206;^{&#8206;\prime} &#8206;$
&#8206;define on &#8206;$&#8206;X&#8206;$ &#8206;as follow:&#8206;
$&#8206; &#8206;\tau&#8206;^{&#8206;\prime&#8206;} = &#8206;\{U&#8206;
&#8206;&#8206;\in&#8206;&#8206; &#8206;\tau :&#8206;&#8206;
&#8206;x&#8206;_{0} &#8206;\not&#8206;\in U \} &#8206;\cup
&#8206;\{U&#8206; &#8206;&#8206;\in &#8206;\tau:&#8206;&#8206;
&#8206;x&#8206;_{0} &#8206;&#8206;&#8206;\in U ,&#8206;U&#8206;&#8206;\in
&#8206;\mathcal{F}&#8206;&#8206;&#8206;&#8206;&#8206;&#8206;\}&#8206;&#8206;&#8206;&#8206;&#8206;&#8206;$
and K a $ \tau&#8206;^{&#8206;\prime} &#8206;$
&#8206;&#8206;&#8206;-compact set. Then there is an &#8206;$
&#8206;F&#8206; &#8206;\in &#8206;&#8206;\mathcal{F} &#8206;$&#8206;
&#8206;, such that &#8206;$ F &#8206;\cap&#8206; K
=&#8206;\emptyset&#8206;&#8206;.&#8206;&#8206;&#8206; $&#8206;
&#8206; &#8206; Lemma : &#8206;With the assumptions of &#8206;abone
&#8206;Lemma if there exists an &#8206;$ &#8206;F_{&#8206;0} &#8206;\in
&#8206;&#8206;\mathcal{F}&#8206;&#8206; $&#8206; such that &#8206;$
&#8206;F_{&#8206;0} &#8206;\cap&#8206;
&#8206;\overline{&#8206;K&#8206;}&#8206; =&#8206;&#8206;
&#8206;&#8206;\emptyset&#8206;&#8206; $&#8206; , then K is &#8206;$
\tau&#8206;^{&#8206;\prime}&#8206;
$&#8206;&#8206;&#8206;&#8206;&#8206;&#8206;-closed.
Proof: &#8206;Since &#8206; &#8206;$ x_{0} &#8206;\in&#8206;K $
&#8206;i&#8206;&#8206;&#8206;t suffices to show that
&#8206;&#8206;$&#8206;K&#8206;$&#8206; is &#8206;$ &#8206;\tau&#8206;
$&#8206;-closed. Let&#8206; $ &#8206; \{ U_i : i &#8206;\in&#8206; I \}
&#8206;$&#8206; , be a &#8206;$ &#8206;\tau&#8206;
$&#8206;&#8206;&#8206;-open cover of
&#8206;&#8206;$&#8206;K&#8206;$&#8206; and let &#8206;$
&#8206;V&#8206;_{0&#8206;}&#8206; &#8206;$&#8206;&#8206;&#8206; be an open
set containing &#8206;$ &#8206;F&#8206;_{0}&#8206;&#8206; $&#8206; such
that &#8206;$ &#8206;F&#8206;_&#8206;0 &#8745; K =
&#8206;\emptyset&#8206;&#8206; $&#8206; . Then the collection &#8206;$
\{&#8206;U_&#8206;i &#8206;\cup &#8206;V_&#8206;0 : i &#8712; I \}
$&#8206;, is a $ \tau&#8206;^{&#8206;\prime} &#8206;$&#8206;-open cover of
&#8206;&#8206;$&#8206;K&#8206;$&#8206; and thus it has a finite subcover,
say,&#8206;$ &#8206;U_&#8206;i_1 &#8206;\cup &#8206;U_&#8206;i_2
&#8206;\cup&#8206; . . . &#8206;\cup &#8206;U_&#8206;i_n &#8206;\cup
&#8206;V_&#8206;0&#8206; $&#8206; . The set &#8206;$ &#8206;\cup
\{&#8206;U_&#8206;i_k : k = 1, 2, . . . , n &#8206;&#8206;\}$&#8206;
covers &#8206;$&#8206;K&#8206;$&#8206;, so &#8206;$&#8206;K&#8206;$&#8206;
is $ &#8206;\tau &#8206;$&#8206;-compact and therefore $ &#8206;\tau
&#8206;$&#8206;-&#8206;closed.&#8206;&#8206;
(1) &#8206;We &#8206;can &#8206;say &#8206;"&#8206; &#8206;Since &#8206;
&#8206;$ x_{0} &#8206;\in&#8206;K $ &#8206;i&#8206;&#8206;&#8206;t
suffices to show that &#8206;&#8206;$&#8206;K&#8206;$&#8206; is &#8206;$
&#8206;\tau&#8206; $&#8206;-&#8206;closed." &#8206;is &#8206;it &#8206;due
&#8206;to&#8206; &#8206;$ K&#8206;_{&#8206;\tau&#8206;}&#8206; =
K&#8206;_{&#8206;\sigma&#8206;}&#8206;$&#8206;?
&#8206;(2)is &#8206;the &#8206;exsistence &#8206;of &#8206;$
&#8206;F&#8206;_&#8206;0 &#8745; K = &#8206;\emptyset&#8206;&#8206;
&#8206;&#8206;&#8206; $&#8206; &#8206;proved &#8206;by &#8206;abov
&#8206;lemma?&#8206;

No comments:

Post a Comment